

0279

Originally Issued: 05/2013 Revised: 08/29/2014 Valid Through: 05/2015

EVALUATION SUBJECT:

Helix 5-25 Micro-Rebar Concrete Reinforcement System

REPORT HOLDER: REPORT HOLDER:

Polytorx, LLC d.b.a. Helix Steel 300 N 5th Ave Suite 130 Ann Arbor, MI 48104 734-322-2114

www.helixsteel.com info@helixsteel.com

CSI Division: 03 00 00—CONCRETE CSI Section: 03 20 00 CONCRETE

REINFORCEMENT

1.0 SCOPE OF EVALUATION

1.1 Compliance to the following codes & regulations:

- 2012 International Building Code® (IBC)
- 2012 International Residential Code® (IRC)
- 2009 International Building Code® (IBC)
- 2009 International Residential Code® (IRC)

1.2 Evaluated in Accordance With:

- IAPMO UES EC015-2013, adopted December 2013
- ICC-ES AC208, approved October 2005, editorially revised November 2012

1.3 Properties Assessed:

- Shrinkage and temperature crack control in concrete
- Structural tension and shear resistance in concrete
- Fire Resistance

2.0 PRODUCT USE

Helix 5-25 Micro-Rebar functions as tensile reinforcement for concrete.

2.1 Helix Micro-Rebar may be used to reduce shrinkage and temperature cracking of concrete. Helix Micro-Rebar may be used as an alternative to the shrinkage and temperature reinforcement specified in Section 7.12 and Chapter 22 of ACI 318 (as referenced in Section 1901.2 of the IBC and Sections R404.1.2 and R611.1 of the IRC).

- **2.2** Helix Micro-Rebar may be used as tension and shear reinforcement in other structural concrete as detailed in this report which satisfies the requirements of ACI 318 Section 1.4 and Section 104.11 of the IBC and IRC.
- **2.3** Use in Seismic Design Categories C, D, E, and F is subject to the restrictions listed in Section 5.2 of this report.

3.0 PRODUCT DESCRIPTION

Helix 5-25 Micro-Rebar reinforced concrete consists of two materials, as described in Sections 3.1 and 3.2 of this report.

- **3.1 Product Information:** Helix 5-25 Micro-Rebar is made from cold-drawn, deformed wire complying with ASTM A 820, Type I. The steel wire has a tensile strength of 275 ksi +/- 15 ksi (1850 MPa +/-150 MPa) and a minimum of 3 g/m² zinc coating. The length (l) is 1.0 inch +/- 0.1 inch (25 mm +/- 0.004 mm), equivalent diameter is 0.020 inch +/-0.007 inch (0.5 mm +/- 0.02 mm), and cross sectional area is 0.003 square inches (0.196 mm²). Each Helix Micro-Rebar has a minimum of one 360-degree twist. Helix Micro-Rebars are packaged in 22.5 pound (10 kg) boxes, 45-pound (20.4 kg) boxes or 2450-pound (1100 kg) bags.
- **3.2** Normal Weight Concrete with a minimum 28 day compressive strength of 3,000 psi (20.67 MPa).

4.0 DESIGN AND INSTALLATION

4.1 Design Class Selection: The Helix design class shall be selected based on the application and consequence of failure. The registered design professional shall select the design class based on the criteria in Sections 4.2 through 4.5 of this report. Figure 1 of this report provides guidance in making the design class selection.

4.2 Class A – Shrinkage and temperature Reinforcement

4.2.1 Helix 5-25 Micro-Rebar replaces deformed reinforcement bars (rebar) or welded wire reinforcement for shrinkage and temperature reinforcement specified in Section 7.12 of ACI 318 in members complying with the requirements of Section 22.2.1 (a or b) of ACI 318. This application includes structural plain concrete structures designed in accordance with Chapter 22 of ACI 318 (as referenced in Section 1901.2 of the IBC and Sections 404.1.2 and R611.1 of the IRC).

0279

Originally Issued: 05/2013 Revised: 08/29/2014 Valid Through: 05/2015

4.2.2 Helix 5-25 Micro-Rebar replaces shrinkage and temperature reinforcement in non-composite stay in place form steel deck applications.

4.2.3 Helix 5-25 Micro Rebar may be used in any concrete structure where reinforcement is not required by the IBC or IRC or addition to reinforcement required by the IBC or IRC to reduce shrinkage and temperature cracking of the concrete.

4.3 Class B - Minimum Structural Reinforcement

- **4.3.1** Helix 5-25 Micro-Rebar replaces structural reinforcement in soil-supported structures including footings, and foundations.
- **4.3.2** Helix 5-25 Micro-Rebar replaces structural reinforcement in arch structures members in which arch action provides compression in the cross-section.
- **4.3.3** Helix 5-25 Micro-Rebar replaces structural reinforcement in structural concrete slabs supported directly on the ground designed in accordance with ACI 318.
- **4.3.4** Helix 5-25 Micro-Rebar used replaces structural reinforcement in pile-supported slabs on ground designed in accordance with ACI 318, with un-occupied space below not to exceed the slab thickness (so failure will not result in structural collapse endangering occupants).
- **4.3.5** Helix 5-25 Micro-Rebar replaces reinforcement in structural walls designed in accordance with ACI 318 Chapter 14 and conforming to the following criteria:
 - Thickness of bearing walls shall be not less than 1/24 the unsupported height or length, whichever is shorter nor less than 5½ inches (140 mm). Nonbearing walls support no more than 200 pounds per linear foot (2919 N/m) of vertical load in addition to its own weight.
 - Thickness of bearing walls designed in accordance with the IRC shall not be less than 4 inches (100 mm).
 - Bearing walls support more than 200 pounds per linear foot (2919 N/m) of vertical load in addition to its own weight
 - Walls shall be braced against lateral translation (walls shall be laterally supported in such a manner as to prohibit relative lateral displacement at top and bottom or on both sides of individual wall elements such as occurs with free-standing walls or walls in

- large structures where significant roof diaphragm deflections).
- At least one No. 5 (16 mm) bar shall be provided around all window, door, and similar sized openings except that for structures regulated under the IRC, at least one No. 4 (13 mm) bar may be provided. The bars shall be anchored to develop f_y in tension at the corners of openings.
- **4.3.6** Helix 5-25 Micro-Rebar is used to reinforce slabs-onground designed using non-linear load analysis provided maximum tensile strains are limited to levels provided in Section 5.7 of this report.

4.4 Class C – Structural Concrete

Helix 5-25 Micro-Rebar replaces structural reinforcement for all other structural concrete including in unsupported horizontal spans.

4.5 Class Cs – Non-Linear Slab Design

Helix 5-25 Micro-Rebar used as reinforcement in slabs on ground designed in accordance with ACI 360-10 Chapter 11.3.3 Methods 2 and 4, Yield Line Analysis and Nonlinear finite element analysis (when tensile strain limits given in Section 5.7 of this report are exceeded; when not exceeded the design shall comply with Section 4.3.6 of this report).

4.6 Design

Helix 5-25 Micro-Rebar dosage quantity shall be determined by procedures in this section and Tables 1, 2, and 3 of this report. Figure 2 of this report, the Helix Force Equilibrium and Strain Compatibility Diagram, shall be observed in the structural design.

4.6.1 Required Area of Steel

- Class A: The required area of steel, A_s , for shrinkage and temperature reinforcement shall be determined by the design procedures in Section 7.12 of ACI 318 or other applicable code sections.
- Class B & and C: The required area of steel reinforcement shall be determined at the centroid of the tension zone (Helix 5-25 Micro-Rebar acts as a rectangular tensile block as shown in Figure 2 of this report) in accordance with standard design procedures in ACI 318 using load and resistance factor design.
- An appropriate strength reduction factor has been applied to the Helix design strength in Tables 1 to 3 of this report.

4.6.2 Required Helix Micro-Rebar Quantity

0279

Originally Issued: 05/2013 Revised: 08/29/2014 Valid Through: 05/2015

Table 1 of this report provides the total number of Helix Micro-Rebar required to provide the same tensile resistance as the area of steel computed in Section 4.6.1 of this report. This number shall be divided by the cross-sectional area of the concrete in tension to obtain the number of Helix 5-25 Micro-Rebar required per unit area. This concrete area may result from either direct tension, flexural tension, or shear. Table 1 includes a factor to account for variation on Helix 5-25 Micro-Rebar resistance.

4.6.3 Helix 5-25 Micro-Rebar Dosage

The minimum Helix 5-25 Micro-Rebar dosage required to ensure the number of Helix 5-25 Micro-Rebar per unit area (as determined in Section 4.6.2 of this report) are provided in the tensile region of the concrete shall be selected from Table 2 of this report. This table includes factors to account for variation in orientation and distribution of Helix 5-25 Micro-Rebar.

4.6.4 Helix 5-25 Micro-rebar Tensile Force

Using the required number of Helix 5-25 Micro-rebar per unit area computed from Section 4.6.2 of this report, the provided Helix 5-25 Micro-Rebar unit tensile stress shall be selected from Table 3 of this report. This value may be multiplied by the cross-sectional area in tension to compute the total tensile resistance force.

4.6.5 Strain in the Helix 5-25 Micro-Rebar Concrete

Using the provided Helix unit tensile stress computed from Section 4.6.4 of this report, the average strain shall be calculated by (Eq.-1):

$$\epsilon \; \cong \frac{\text{Helix tensile stress}}{E_{ct}} \tag{Eq.-1}$$

Where:

 E_{ct} = the tensile modulus of elasticity of Helix 5-25 Micro-Rebar concrete, computed from Section 8.5 of ACI 318,psi (MPa).

 ε = average concrete tensile strain

4.6.6 Pre- or post- tensioned concrete

With pre- or post- tensioned concrete, the initial compressive strain may be subtracted from the average strain calculated in Eq.-1.

4.6.7 Restrained shrinkage

In cases of restrained shrinkage, the shrinkage strain shall be added to the average strain computed in Eq.-1.

4.6.8 Shear

The same method as provided in Sections 4.6.1 to 4.6.7 of this report shall be used for determining shear and torsion reinforcement. The contribution of plain concrete shall be neglected in shear applications (do not add V_c to the shear resistance computed for Helix Micro-Rebar). The area in tension should be taken as no more than the 1.41 x the section width x height minus twice the neutral axis depth. When replacing both bending and shear reinforcement the higher of the two dosages shall govern the design.

4.7 Hybrid Design

Hybrid design includes a combination of deformed reinforcement (rebar) and Helix 5-25 Micro-Rebar. For Hybrid Design, the area of steel computed in accordance with Section 4.6.1 of this report may be reduced by the cross-sectional area of the rebar that will remain prior to determining the required minimum number of Helix Micro-Rebar in Section 4.6.2 of this report.

- **4.7.1** Hybrid design for Class A or B structures have no minimum bar reinforcing requirement provided the application requirements in Sections 4.2 and 4.3 are met and strain limits conform to Section 5.7 of this report.
- **4.7.2** Structures complying with the Class A or B application restrictions in Sections 4.2 and 4.3 of this report but exceeding the strain limits in Section 5.7 may be designed as Class B Hybrid. This process will reduce the strain computed in Section 4.6.5 of this report. The strain limit shall be maintained even if the minimum amount bar reinforcement as prescribed in ACI 318 section 10.5 is provided. Alternatively, the registered design professional may elect to use Class C without the need for bar reinforcement.
- **4.7.3** Structures not complying with Class A and B application limitations listed in section 4.2 and 4.3 of this report may be designed as Class C hybrid with a minimum amount of bar reinforcement as prescribed in ACI 318 Section 10.5 except as provided in Section 5.12 of this report.
- **4.7.4** Subject to approval of the code official, the requirement for bar reinforcement in Sections 4.7.2 and 4.7.3 of this report may be waived if registered design professional shows through supplemental testing and/or analysis adequate strength for the factored loads and serviceability requirements.
- **4.7.5** Strength provided by concrete in non-composite stay

Originally Issued: 05/2013 Revised: 08/29/2014 Valid Through: 05/2015

in-place forms in applications not complying with the Class A and B application limitations may be used to satisfy the minimum reinforcement requirement provided the registered design professional shows the Helix-reinforced concrete provides resistance equal to or greater than the resistance provided by the required bar reinforcement. The Helix-reinforced design strength, however, shall be adequate to carry the entire load (the contribution of the stay in place forms shall not be added to the capacity).

4.8 Yield Line Methods (ACI 360-10).

The section moment capacity ϕMn shall be calculated using the values in Table 3 of this report. The quantity $\frac{\phi M_n}{S_m \times fr}$ shall replace $\frac{\text{Re},3}{100}$ in ACI 360-10 equations. All other calculations remain the same.

4.9 Fire-Resistance Ratings

- **4.9.1** For flat walls complying with IBC 722.2.1.1, Helix 5-25 Micro-Rebar are permitted as an alternative to the specified reinforcement according to IBC 722.2.1.1 The maximum dosage is 66 lb/yd³ (38 kg/m³).
- **4.9.2** For slabs on metal deck, Helix 5-25 Micro-Rebar are permitted as an alternative or in addition to the welded wire fabric used in concrete members under Underwriters Laboratories Design Nos. G256 dated January 6, 2014 and G514 dated October 11, 2013. The maximum dosage is 66 lb/yd^3 (38 kg/m³).

5.0 CONDITIONS OF USE

The Helix 5-25 Micro-Rebar described in this report comply with, and/or are suitable alternatives to what is specified in those codes listed in Section 1.0 of this report, subject to the following conditions:

- **5.1** The concrete with Helix 5-25 Micro-Rebar shall comply with the ASTM C1116, Type I requirements. Substitution of any other steel fiber for Helix 5-25 is not allowed.
- **5.2** Structures complying with the requirements of Class A, B and Cs (Section 4.1) are allowed in all seismic design categories permitted by the IBC for these applications. Class C structures in Seismic Design Categories C, D, E, and F are outside of the scope of this report.
- 5.3 Helix Micro-Rebar shall be blended into the concrete

mix in accordance with Section 4.0 of this report, IBC Section 1905.8, and the manufacturers published installation instructions. If there is a conflict between the evaluation report and the manufacturer's published installation instructions, the more restrictive governs.

0279

- **5.4** Concrete used in classes A, B and Cs shall be normal weight and have a minimum compressive strength of 3,000 psi (20.67 MPa) and a maximum compressive strength of 8,000 psi (55.12 MPa).
- **5.5** The Helix Micro-Rebar shall not be used to replace any joints specified in IBC Section 1909.3.
- **5.6** Concrete used in Class C structures shall be normalweight and have a minimum compressive strength of 4,000 psi (27.56 Mpa) and a maximum compressive strength of 8,000 psi (55.12 MPa) and the mix shall have minimum fine to total aggregate ratio of 0.50 to assure adequate bond with the Helix Micro-Rebar.
- **5.7** Class A and B Strain Limits: The average tensile strain in the concrete shall not exceed the following

Number of Helix per area	Tensile
	Strain, ε
Less than 3 Helix/in ²	0.000076
$(4,650 \text{ Helix/m}^2)$	
3 to 7 Helix/in ²	0.000105
$(4,650 \text{ to } 10,850 \text{ Helix/m}^2)$	
Greater than 7 Helix/in ²	0.000110
$(10,850 \text{ Helix/m}^2)$	

- **5.8** Hybrid design in accordance with Section 4.7 of this report is allowed for Class A structures complying with Section 4.2 of this report and B structures complying with Section 4.3 of this report, with no minimum reinforcing bar requirement, provided strain limits comply with Section 5.7 of this report.
- 5.9 Helix 5-25 Micro-Rebar shall be limited to the following dosages:

5.9.1 Class A:

Minimum 9 lb/yd³ (5.4 kg/m³) Maximum 70 lb/yd³ (42 kg/m³)

Except for slab on ground applications designed as unreinforced concrete in accordance with ACI 360-10 Chapter 7, the minimum dosage does not apply.

5.9.2 Class B:

0279

Originally Issued: 05/2013 Revised: 08/29/2014 Valid Through: 05/2015

Minimum 9 lb/yd³ (5.4 kg/m³) Maximum 70 lb/yd³ (42 kg/m³)

5.9.3 Class C:

Minimum 15 lb/yd3 (9 kg/m³) Maximum 70 lb/yd3 (42 kg/m³)

5.9.4 Class Cs:

Minimum 20 lb/yd3 (12 kg/m³) Maximum 70 lb/yd3 (42 kg/m³)

- **5.10** For flexure, standard balanced and tension controlled Limits as prescribed in ACI 318 Section 10.3 apply.
- **5.11** A registered design professional shall approve use of Helix 5-25 Micro-Rebar.
- **5.12** Unsupported horizontal spans (free-spanning beams or slabs with occupied space above or beneath) shall have the minimum amount of bar reinforcement required to carry nominal service loads.
- **5.13** Helix 5-25 Micro Rebar shall not be used to replace supplemental rebar placed around openings and tied to lifting points in either cast-in-place or precast concrete.
- **5.14** Helix 5-25 Micro-Rebar shall be added to the concrete either at the ready-mix plant or at the jobsite. The manufacturer's published installation instructions and this report shall be strictly adhered to, and a copy of the manufacturer's published installation instructions shall be available at all times on the jobsite or the batch plant during installation. Installation instructions are available at www.helixsteel.com.
- **5.15** When Helix 5-25 Micro-Rebar is added at the readymix plant, a batch ticket signed by a ready-mix representative shall be available to the code official upon request. The delivery ticket shall include, in addition to the items noted in ASTM C 94, the type and amount of Helix Micro-Rebar added to the concrete mix.
- **5.16** Field verification of Helix 5-25 Micro-Rebar dosage not required for Class A, B and Cs or in applications designed with the minimum quantity of structural reinforcing bars in accordance with ACI 318. When verification is required, such as for Class C structures and as otherwise specified, the procedures in Appendix A shall be observed.
- 5.17 Helix Micro-Rebar is manufactured under a

worldwide exclusive license by Polytorx, LLC d.b.a Helix Steel.

6.0 SUBSTANTIATING DATA

- Data in accordance with the ICC-ES Acceptance Criteria for Steel Fibers in Concrete (AC208), dated October 2005, editorially revised November 2012.
- Data in accordance with IAPMO UES Acceptance Criteria for Twisted Steel Micro-Rebar (EC015), dated December 2013.

7.0 FIGURES, TABLES AND EXAMPLES

Figures (Attached)

- Figure 1: Helix Design Class Selection Flow Chart
- Figure 2: Helix Force Equilibrium and Strain Compatibility Diagram

Tables (Attached)

- Table 1: Helix micro rebar replacement
- Table 2: Helix micro rebar dosage rate
- Table 3: Helix micro rebar tensile force

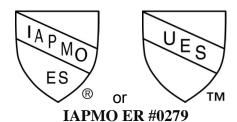
Examples Calculations (Attached)

- Example 1: Class A Slab on Grade Design Original Rebar Design Given
- Example 2: Class B Slab on Metal Deck Original Mesh Given
- Example 3: Class B Wall Design Minimum Reinforcement Ratio Given
- Example 4: Class B Grade Beam Shear Design Only Original Shear Rebar Given
- Example 5: Class B Wall Design Hybrid

8.0 APPENDICIES

- A. Optional Field Dosage Verification Method
- B. Minimum Helix Dosage Quick Reference

EVALUATION REPORT N


Number:

0279

Originally Issued: 05/2013 Revised: 08/29/2014 Valid Through: 05/2015

9.0 IDENTIFICATION

Labels on the boxes or bags bear the name Helix 5-25 and the number of the IAPMO UES evaluation report number (ER-0279), which identifies the product listed in this report. Either Mark of Conformity may be used as shown below:

Spian Derber Brian Gerber, P.E., S.E.

Technical Director of Uniform Evaluation Service

Richard Beck, PE, CBO, MCP Director of Uniform Evaluation Service

GP Russ Chaney /
CEO, The IAPMO Group

For additional information about this evaluation report please visit www.uniform-es.org or email at info@uniform-es.org

Originally Issued: 05/2013 Revised: 08/29/2014 Valid Through: 05/2015

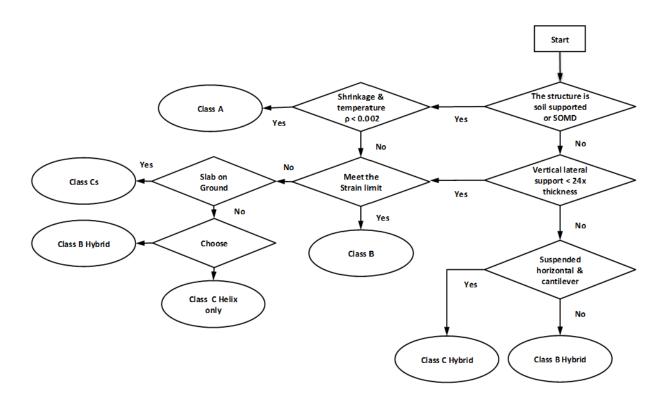
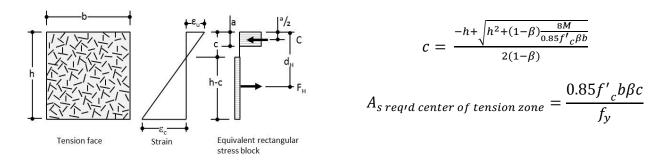



Figure 1 - Helix Design Class Selection Flow Chart

Where

M is the required moment capacity of the section calculated per ACI 318. If considering a previously designed section, $M = \phi M_n$. Otherwise, $M = M_u$, where M_u is the factored moment of the section based upon loading.

 A_s is the area of steel required at the center of the tension zone (per section 4.6.1) $F_{H=}$ A_s x f_v

f_v is the specified yield strength of the reinforcement

Figure 2: Helix Force Equilibrium and Strain Compatibility Diagram

0279

Nominal area of steel in tension As (in²/ft) 0.028 0.040 0.050 0.060	3000 Class A & B 37.8) psi	400				
tension As (in²/ft) 0.028 0.040 0.050	Class A & B	, ps.	3000 psi 4000 psi 5000 psi				
As (in²/ft) 0.028 0.040 0.050				, ps.		T	
0.028 0.040 0.050		Class C 9 Cs	Class A P B	Class C 9 Cs	Class A S B	Class C 9 C	
0.040 0.050	37.8	Class C & Cs	Class A & B	Class C & Cs	Class A & B	Class C & C	
0.050	F2.6	75.7	37.3	74.6	36.7	73.5	
	53.6	107.2	53.1	106.1	52.5	105.0	
0.060	66.8	133.5	66.2	132.4	65.7	131.3	
0.000	79.9	159.8	79.4	158.7	78.8	157.6	
0.080	106.2	212.4	105.7	211.3	105.1	210.2	
0.090	119.4	238.7	118.8	237.6	118.3	236.5	
0.100	132.5	265.0	132.0	263.9	131.4	262.8	
0.110	145.7	291.3	145.1	290.2	144.6	289.1	
0.120	158.8	317.6	158.3	316.5	157.7	315.4	
0.150	198.2	396.5	197.7	395.4	197.2	394.3	
0.160	211.4	422.8	210.9	421.7	210.3	420.6	
0.170	224.5	449.1	224.0	448.0	223.5	446.9	
0.180	237.7	475.4	237.1	474.3	236.6	473.2	
0.200	264.0	528.0	263.4	526.9	262.9	525.8	
0.240	316.6	633.2	316.0	632.1	315.5	631.0	
0.250	329.7	659.5	329.2	658.4	328.6	657.3	
0.300	395.5	791.0	394.9	789.9	394.4	788.8	
0.310	408.6	817.3	408.1	816.2	407.5	815.1	
0.400	527.0	1054.0	526.4	1052.9	525.9	1051.8	
0.440	579.6	1159.2	579.0	1158.1	578.5	1157.0	
0.470	619.0	1238.1	618.5	1237.0	617.9	1235.9	
0.490	645.3	1290.6	644.8	1289.6	644.2	1288.5	
0.500	658.5	1316.9	657.9	1315.8	657.4	1314.8	
0.600	790.0	1579.9	789.4	1578.8	788.9	1577.7	
0.700	921.5	1842.9	920.9	1841.8	920.4	1840.7	
0.760	1000.4	2000.7	999.8	1999.6	999.3	1998.5	
0.780	1026.7	2053.3	1026.1	2052.2	1025.6	2051.1	
0.790	1039.8	2079.6	1039.3	2078.5	1038.7	2077.4	
0.800	1053.0	2105.9	1052.4	2104.8	1051.9	2103.7	
0.900	1184.4	2368.9	1183.9	2367.8	1183.3	2366.7	
0.950	1250.2	2500.4	1249.6	2499.3	1249.1	2498.2	
1.000	1315.9	2631.9	1315.4	2630.8	1314.8	2629.7	
1.090	1434.3	2868.6	1433.7	2867.5	1433.2	2866.4	
1.250	1644.7	3289.3	1644.1	3288.2	1643.6	3287.1	
1.270	1671.0	3341.9	1670.4	3340.8	1669.9	3339.7	
1.550	2039.1	4078.3	2038.6	4077.2	2038.0	4076.1	
1.950	2565.1	5130.2	2564.6	5129.1	2564.0	5128.0	
2.250	2959.6	5919.2	2959.0	5918.1	2958.5	5917.0	
2.330	3064.8	6129.6	3064.2	6128.5	3063.7	6127.4	
3.040	3998.4	7996.8	3997.8	7995.7	3997.3	7994.6	
3.880	5102.9	10205.8	5102.4	10204.7	5101.8	10203.6	
4.000	5260.7	10521.4	5260.2	10520.3	5259.6	10519.2	
4.500	5918.2	11836.3	5917.6	11835.2	5917.1	11834.1	
5.000	6575.6	13151.3	6575.1	13150.2	6574.5	13149.1	
5.500	7233.1	14466.2	7232.5	14465.1	7232.0	14464.0	
6.000	7890.6	15781.1	7890.0	15780.0	7889.5	15778.9	

0279

Fy = 500 Mpa		Nominal n	umber of Hel	ix Micro Reba	r required	
Nominal area of steel in	20 1	Ира	30 I	Ира	40 1	VIpa I
tension As (mm²/m)	Class A & B	Class C & Cs	Class A & B	Class C & Cs	Class A & B	Class C & C
28	70.0	140.0	69.2	138.5	68.4	136.9
45	111.9	223.8	111.1	222.2	110.3	220.6
50	124.2	248.4	123.4	246.8	122.6	245.2
79	195.6	391.3	194.8	389.7	194.0	388.1
89	220.3	440.5	219.5	438.9	218.7	437.3
90	222.7	445.4	221.9	443.9	221.1	442.3
100	247.3	494.7	246.6	493.1	245.8	491.5
111	274.4	548.9	273.6	547.3	272.9	545.7
113	279.4	558.7	278.6	557.1	277.8	555.6
141	348.3	696.7	347.5	695.1	346.7	693.5
150	370.5	741.0	369.7	739.4	368.9	737.8
154	380.3	760.7	379.5	759.1	378.8	757.5
179	441.9	883.8	441.1	882.2	440.3	880.7
200	493.6	987.3	492.8	985.7	492.0	984.1
201	496.1	992.2	495.3	990.6	494.5	989.0
227	560.1	1120.3	559.3	1118.7	558.5	1117.1
250	616.8	1233.6	616.0	1232.0	615.2	1230.4
290	715.3	1430.6	714.5	1429.0	713.7	1427.4
300	739.9	1479.8	739.1	1478.3	738.3	1476.7
314	774.4	1548.8	773.6	1547.2	772.8	1545.6
350	863.1	1726.1	862.3	1724.5	861.5	1722.9
354	872.9	1745.8	872.1	1744.2	871.3	1742.6
400	986.2	1972.4	985.4	1970.8	984.6	1969.2
450	1109.3	2218.7	1108.6	2217.1	1107.8	2215.5
454	1119.2	2238.4	1118.4	2236.8	1117.6	2235.2
491	1210.3	2420.6	1209.5	2419.1	1208.7	2417.5
500	1232.5	2465.0	1231.7	2463.4	1230.9	2461.8
550	1355.6	2711.3	1354.8	2709.7	1354.0	2708.1
600	1478.8	2957.6	1478.0	2956.0	1477.2	2954.4
616	1518.2	3036.4	1517.4	3034.8	1516.6	3033.2
650	1601.9	3203.8	1601.1	3202.2	1600.3	3200.7
700	1725.1	3450.1	1724.3	3448.5	1723.5	3446.9
750	1848.2	3696.4	1847.4	3694.8	1846.6	3693.2
800	1971.3	3942.7	1970.6	3941.1	1969.8	3939.5
804	1981.2	3962.4	1980.4	3960.8	1979.6	3959.2
850	2094.5	4189.0	2093.7	4187.4	2092.9	4185.8
900	2217.6	4435.3	2216.8	4433.7	2216.0	4432.1
950	2340.8	4681.5	2340.0	4680.0	2339.2	4678.4
1000	2463.9	4927.8	2463.1	4926.2	2462.3	4924.7
1100	2710.2	5420.4	2709.4	5418.8	2708.6	5417.2
1200	2956.5	5913.0	2955.7	5911.4	2954.9	5909.8
1257	3096.9	6193.7	3096.1	6192.1	3095.3	6190.6
1300	3202.8	6405.5	3202.0	6404.0	3201.2	6402.4
1400	3449.1	6898.1	3448.3	6896.5	3447.5	6894.9
1500	3695.3	7390.7	3694.5	7389.1	3693.8	7387.5
1963	4835.6	9671.3	4834.8	9669.7	4834.1	9668.1
2500	6158.2	12316.4	6157.4	12314.8	6156.6	12313.2

0279

Table	2. 441:			400000	+-	Immorial
rabie	z: neiix	(micro	repar	aosage	rate -	Imperial

	Table 2: Helix micro rebar dosage rate - Imperial											
Number of					Helix d	losage ra	ate, H _d (I	b/yd³)				
Helix per unit area in		3000) psi			4000) psi			5000	0 psi	
tension (Helix/in²)	Class A	Class B	Class C	Class C _s	Class A	Class B	Class C	Class C _s	Class A	Class B	Class C	Class C _s
1.18	5.5	7.2	6.4	5.5	5.5	7.3	6.6	5.5	5.5	7.5	6.8	5.5
1.25	5.8	7.6	6.8	5.8	5.8	7.7	7.0	5.8	5.8	8.0	7.2	5.8
1.43	6.6	8.7	7.8	6.6	6.6	8.9	8.0	6.6	6.6	9.1	8.2	6.6
1.50	7.0	9.1	8.2	7.0	7.0	9.3	8.4	7.0	7.0	9.6	8.6	7.0
1.53	7.1	9.3	8.3	7.1	7.1	9.5	8.5	7.1	7.1	9.7	8.7	7.1
1.75	8.1	10.6	9.5	8.1	8.1	10.7	9.7	8.1	8.1	11.0	9.9	8.1
2.00	9.3	12.0	10.8	9.3	9.3	12.1	11.0	9.3	9.3	12.4	11.2	9.3
2.25	10.4	13.3	12.1	10.4	10.4	13.4	12.3	10.4	10.4	13.7	12.5	10.4
2.50	11.6	14.7	13.4	11.6	11.6	14.8	13.6	11.6	11.6	15.1	13.7	11.6
2.75	12.8	16.0	14.7	12.8	12.8	16.1	14.9	12.8	12.8	16.6	15.0	12.8
3.00	13.9	17.3	16.0	13.9	13.9	17.4	16.1	13.9	13.9	17.9	16.2	13.9
3.25	15.1	18.6	17.2	15.1	15.1	18.7	17.4	15.1	15.1	19.1	17.5	15.1
3.50	16.2	19.9	18.5	16.2	16.2	20.0	18.6	16.2	16.2	20.6	18.7	16.2
3.75	17.4	21.1	19.7	17.4	17.4	21.2	19.8	17.4	17.4	21.8	19.9	17.4
4.00	18.5	22.4	20.9	18.5	18.5	22.5	21.1	18.5	18.5	22.9	21.2	18.5
4.25	19.7	23.6	22.2	19.7	19.7	23.7	22.3	19.7	19.7	24.3	22.4	19.7
4.50	20.9	24.9	23.4	20.9	20.9	25.0	23.5	20.9	20.9	25.5	23.6	20.9
4.75	22.0	26.1	24.6	22.0	22.0	26.2	24.7	22.0	22.0	26.9	24.8	22.0
5.00	23.2	27.4	25.8	23.2	23.2	27.5	25.9	23.2	23.2	28.3	26.0	23.2
5.25	24.3	28.6	27.0	24.3	24.3	28.7	27.1	24.3	24.3	29.3	27.2	24.3
5.50	25.5	29.8	28.2	25.5	25.5	29.9	28.3	25.5	25.5	30.7	28.4	25.5
5.75	26.7	31.1	29.5	26.7	26.7	31.2	29.5	26.7	26.7	32.1	29.6	26.7
6.00	27.8	32.3	30.7	27.8	27.8	32.4	30.8	27.8	27.8	33.1	30.8	27.8
6.25	29.0	33.5	31.9	29.0	29.0	33.6	32.0	29.0	29.0	34.5	32.1	29.0
6.50	30.1	34.8	33.1	30.1	30.1	34.9	33.2	30.1	30.1	35.9	33.3	30.1
6.75 7.00	31.3 32.5	36.1 37.4	34.3 35.6	31.3 32.5	31.3 32.5	36.1 37.5	34.4 35.7	31.3 32.5	31.3 32.5	37.3 38.7	34.5 35.8	31.3 32.5
7.25 7.50	33.6 34.8	38.7 40.1	36.9 38.2	33.6 34.8	33.6 34.8	38.8 40.1	37.0 38.2	33.6 34.8	33.6 34.8	40.0	37.0 38.3	33.6 34.8
7.75	35.9	41.4	39.4	35.9	35.9	41.5	39.5	35.9	35.9	42.8	39.6	35.9
8.00	37.1	42.8	40.7	37.1	37.1	42.8	40.8	37.1	37.1	44.2	40.9	37.1
8.25	38.3	44.1	42.0	38.3	38.3	44.2	42.1	38.3	38.3	45.6	42.2	38.3
8.50	39.4	45.4	43.3	39.4	39.4	45.5	43.3	39.4	39.4	46.9	43.4	39.4
8.75	40.6	46.8	44.5	40.6	40.6	46.8	44.6	40.6	40.6	48.3	44.7	40.6
9.00	41.7	48.1	45.8	41.7	41.7	48.2	45.9	41.7	41.7	49.7	46.0	41.7
9.25	42.9	49.4	47.1	42.9	42.9	49.5	47.2	42.9	42.9	51.1	47.3	42.9
9.50	44.0	50.8	48.4	44.0	44.0	50.9	48.4	44.0	44.0	52.5	48.5	44.0
9.75	45.2	52.1	49.6	45.2	45.2	52.2	49.7	45.2	45.2	53.8	49.8	45.2
10.00	46.4	53.5	50.9	46.4	46.4	53.5	51.0	46.4	46.4	55.2	51.1	46.4
10.25	47.5	54.8	52.2	47.5	47.5	54.9	52.3	47.5	47.5	56.6	52.4	47.5
10.50	48.7	56.1	53.5	48.7	48.7	56.2	53.6	48.7	48.7	58.0	53.6	48.7
10.75	49.8	57.5	54.7	49.8	49.8	57.6	54.8	49.8	49.8	59.4	54.9	49.8
11.00	51.0	58.8	56.0	51.0	51.0	58.9	56.1	51.0	51.0	60.7	56.2	51.0
11.25	52.2	60.2	57.3	52.2	52.2	60.2	57.4	52.2	52.2	62.1	57.5	52.2
11.50	53.3	61.5	58.6	53.3	53.3	61.6	58.7	53.3	53.3	63.5	58.7	53.3
11.75	54.5	62.8	59.8	54.5	54.5	62.9	59.9	54.5	54.5	64.9	60.0	54.5
12.00	55.6	64.2	61.1	55.6	55.6	64.3	61.2	55.6	55.6	66.3	61.3	55.6

0279

Originally Issued: 05/2013 Revised: 08/29/2014 Valid Through: 05/2015

	Table 2: Helix micro rebar dosage rate - Metric											
Number of					Helix d	losage ra	ite, H _d (l	kg/m3)				
Helix per unit area in		20 1	Ира			30 N	Ира			40 [Ира	
tension (Helix/m²)	Class A	Class B	Class C	Class C _s	Class A	Class B	Class C	Class C _s	Class A	Class B	Class C	Class C _s
2000	3.5	4.6	4.1	3.5	3.5	4.8	4.3	3.5	3.5	4.9	4.5	3.5
2500	4.4	5.8	5.2	4.4	4.4	5.9	5.3	4.4	4.4	6.0	5.5	4.4
3000	5.3	6.9	6.2	5.3	5.3	7.0	6.4	5.3	5.3	7.1	6.5	5.3
3500	6.2	7.9	7.2	6.2	6.2	8.0	7.3	6.2	6.2	8.1	7.5	6.2
4000	7.1	8.9	8.2	7.1	7.1	9.0	8.3	7.1	7.1	9.1	8.5	7.1
4500	8.0	10.0	9.2	8.0	8.0	10.1	9.3	8.0	8.0	10.1	9.4	8.0
5000	8.9	10.0	10.1	8.9	8.9	11.0	10.2	8.9	8.9	11.1	10.4	8.9
					9.8		11.2			12.1		9.8
5500	9.8	11.9	11.1	9.8		12.0		9.8	9.8		11.3	
6000	10.6	12.9	12.0	10.6	10.6	13.0	12.1	10.6	10.6	13.1	12.2	10.6
6500	11.5	13.9	13.0	11.5	11.5	13.9	13.1	11.5	11.5	14.0	13.2	11.5
7000	12.4	14.8	13.9	12.4	12.4	14.9	14.0	12.4	12.4	15.0	14.1	12.4
7500	13.3	15.8	14.8	13.3	13.3	15.8	14.9	13.3	13.3	15.9	15.0	13.3
8000	14.2	16.7	15.8	14.2	14.2	16.8	15.9	14.2	14.2	16.8	15.9	14.2
8500	15.1	17.7	16.7	15.1	15.1	17.7	16.8	15.1	15.1	17.8	16.9	15.1
9000	16.0	18.6	17.6	16.0	16.0	18.7	17.7	16.0	16.0	18.7	17.8	16.0
9500	16.9	19.5	18.6	16.9	16.9	19.6	18.6	16.9	16.9	19.7	18.7	16.9
10000	17.7	20.5	19.5	17.7	17.7	20.6	19.6	17.7	17.7	20.6	19.6	17.7
10500	18.6	21.5	20.4	18.6	18.6	21.5	20.5	18.6	18.6	21.6	20.6	18.6
11000	19.5	22.5	21.4	19.5	19.5	22.6	21.5	19.5	19.5	22.6	21.6	19.5
11500	20.4	23.5	22.4	20.4	20.4	23.6	22.5	20.4	20.4	23.6	22.5	20.4
12000	21.3	24.5	23.4	21.3	21.3	24.6	23.4	21.3	21.3	24.7	23.5	21.3
12500	22.2	25.6	24.3	22.2	22.2	25.6	24.4	22.2	22.2	25.7	24.5	22.2
13000	23.1	26.6	25.3	23.1	23.1	26.7	25.4	23.1	23.1	26.7	25.5	23.1
13500	24.0	27.6	26.3	24.0	24.0	27.7	26.4	24.0	24.0	27.7	26.4	24.0
14000	24.8	28.6	27.3	24.8	24.8	28.7	27.3	24.8	24.8	28.8	27.4	24.8
14500	25.7	29.7	28.2	25.7	25.7	29.7	28.3	25.7	25.7	29.8	28.4	25.7
15000	26.6	30.7	29.2	26.6	26.6	30.8	29.3	26.6	26.6	30.8	29.4	26.6
15500	27.5	31.7	30.2	27.5	27.5	31.8	30.3	27.5	27.5	31.8	30.4	27.5
16000	28.4	32.8	31.2	28.4	28.4	32.8	31.3	28.4	28.4	32.9	31.3	28.4
16500	29.3	33.8	32.2	29.3	29.3	33.8	32.2	29.3	29.3	33.9	32.3	29.3
17000	30.2	34.8	33.1	30.2	30.2	34.9	33.2	30.2	30.2	34.9	33.3	30.2
17500	31.1	35.8	34.1	31.1	31.1	35.9	34.2	31.1	31.1	35.9	34.3	31.1
18000	31.9	36.9	35.1	31.9	31.9	36.9	35.2	31.9	31.9	37.0	35.2	31.9
18500	32.8	37.9	36.1	32.8	32.8	37.9	36.1	32.8	32.8	38.0	36.2	32.8
19000	33.7	38.9	37.0	33.7	33.7	39.0	37.1	33.7	33.7	39.0	37.2	33.7
19500	34.6	39.9	38.0	34.6	34.6	40.0	38.1	34.6	34.6	40.0	38.2	34.6
20000	35.5	41.0	39.0	35.5	35.5	41.0	39.1	35.5	35.5	41.1	39.1	35.5
20500	36.4	42.0	40.0	36.4	36.4	42.0	40.1	36.4	36.4	42.1	40.1	36.4
21000	37.3	43.0	41.0	37.3	37.3	43.1	41.0	37.3	37.3	43.1	41.1	37.3
21500	38.2	44.0	41.9	38.2	38.2	44.1	42.0	38.2	38.2	44.2	42.1	38.2
22000	39.0	45.1	42.9	39.0	39.0	45.1	43.0	39.0	39.0	45.2	43.1	39.0
22500		46.1		39.0	39.0				39.0			
	39.9		43.9			46.1	44.0	39.9		46.2	44.0	39.9
23000	40.8	47.1	44.9	40.8	40.8	47.2	44.9	40.8	40.8	47.2	45.0	40.8
23500	41.7	48.1	45.8	41.7	41.7	48.2	45.9	41.7	41.7	48.3	46.0	41.7
24000	42.6	49.2	46.8	42.6	42.6	49.2	46.9	42.6	42.6	49.3	47.0	42.6
24500	43.5	50.2	47.8	43.5	43.5	50.2	47.9	43.5	43.5	50.3	47.9	43.5
25000	44.4	51.2	48.8	44.4	44.4	51.3	48.8	44.4	44.4	51.3	48.9	44.4

0279

		Та	ble 3: H	lelix m	icro rel	oar tens	sile for	ce - Imp	erial			
Number of				Provi	ded Heli	x unit te	ensile str	ess, 🛭 F _{ht}	(psi)			
Helix per unit area in		3000) psi			4000) psi		5000 psi			
tension (Helix/in²)	Class A	Class B	Class C	Class C _s	Class A	Class B	Class C	Class C _s	Class A	Class B	Class C	Class C _s
1.18	46.2	62.8	23.8	19.2	50.3	68.4	28.9	23.4	54.5	74.7	34.0	27.6
1.25	49.4	67.1	25.8	20.8	53.5	72.7	30.8	25.0	57.7	79.0	35.9	29.2
1.43	57.6	78.2	30.8	24.9	61.7	83.8	35.8	29.1	65.9	90.3	40.9	33.3
1.50	60.8	82.2	32.6	26.5	64.9	87.8	37.7	30.7	69.1	94.7	42.7	34.9
1.53	62.1	83.9	33.4	27.2	66.3	89.5	38.5	31.4	70.5	96.5	43.5	35.6
1.75	72.2	96.2	39.2	32.2	76.4	101.8	44.2	36.4	80.5	108.8	49.2	40.6
2.00	83.6	110.0	45.7	38.0	87.8	115.4	50.7	42.1	91.9	122.6	55.7	46.3
2.25	95.0	123.4	52.1	43.7	99.2	128.9	57.0	47.8	103.3	136.0	62.0	52.0
2.50	106.4	136.7	58.4	49.4	110.6	142.0	63.3	53.5	114.7	149.0	68.2	57.7
2.75	117.8	149.7	64.7	55.1	122.0	155.0	69.6	59.2	126.2	163.8	74.5	63.4
3.00	129.2	162.6	70.9	60.8	133.4	167.8	75.8	64.9	137.6	176.4	80.6	69.1
3.25	140.6	175.3	77.1	66.5	144.8	180.5	81.9	70.6	149.0	188.6	86.7	74.8
3.50	152.1	187.9	83.2	72.2	156.2	193.0	88.0	76.4	160.4	203.0	92.8	80.5
3.75	163.5	200.4	89.3	77.9	167.6	205.5	94.0	82.1	171.8	214.7	98.8	86.2
4.00	174.9	212.8	95.3	83.6	179.0	217.8	100.1	87.8	183.2	226.2	104.8	91.9
4.25	186.3	225.1	101.4	89.3	190.5	230.1	106.1	93.5	194.6	240.3	110.8	97.6
4.50	197.7	237.4	107.4	95.0	201.9	242.4	112.1	99.2	206.0	251.3	116.8	103.3
4.75	209.1	249.6	113.4	100.7	213.3	254.5	118.1	104.9	217.4	265.2	122.7	109.0
5.00	220.5	261.8	119.4	106.4	224.7	266.7	124.0	110.6	228.8	279.1	128.7	114.7
5.25	231.9	273.9	125.3	112.1	236.1	278.8	130.0	116.3	240.3	289.5	134.6	120.5
5.50	243.3	286.1	131.3	117.8	247.5	291.0	135.9	122.0	251.7	303.2	140.6	126.2
5.75	254.7	298.2	137.3	123.5	258.9	303.1	141.9	127.7	263.1	317.0	146.5	131.9
6.00	266.2	310.4	143.2	129.2	270.3	315.2	147.8	133.4	274.5	326.8	152.5	137.6
6.25	277.6	322.5	149.2	134.9	281.7	327.4	153.8	139.1	285.9	340.4	158.4	143.3
6.50	289.0	334.7	155.2	140.6	293.1	339.5	159.8	144.8	297.3	353.9	164.4	149.0
6.75	300.4	347.2	161.2	146.3	304.6	352.0	165.8	150.5	308.7	367.5	170.4	154.7
7.00	311.8	360.4	167.5	152.1	316.0	365.2	172.1	156.2	320.1	381.1	176.7	160.4
7.25	323.2	373.6	173.8	157.8	327.4	378.4	178.4	161.9	331.5	394.7	183.0	166.1
7.50	334.6	386.8	180.1	163.5	338.8	391.6	184.7	167.6	342.9	408.3	189.3	171.8
7.75	346.0	400.0	186.4	169.2	350.2	404.8	190.9	173.3	354.4	421.9	195.5	177.5
8.00	357.4	413.1	192.6	174.9	361.6	418.0	197.2	179.0	365.8	435.4	201.8	183.2
8.25	368.8	426.3	198.9	180.6	373.0	431.1	203.5	184.7	377.2	449.0	201.8	188.9
8.50	380.3	439.5	205.2	186.3	384.4	444.3	209.8	190.5	388.6	462.6	214.4	194.6
8.75	391.7	452.7	211.5	192.0	395.8	457.5	216.1	196.2	400.0	476.2	220.7	200.3
9.00	403.1	465.9	217.8	197.7	407.2	470.7	222.4	201.9	411.4	489.8	226.9	206.0
9.25	414.5	479.1	224.0	203.4	418.7	483.9	228.6	207.6	422.8	503.4	233.2	211.7
9.50	425.9	492.2	230.3	209.1	430.1	497.1	234.9	213.3	434.2	516.9	239.5	217.4
9.75	437.3	505.4	236.6	214.8	441.5	510.3	241.2	219.0	445.6	530.5	245.8	223.1
10.00	448.7	518.6	242.9	220.5	452.9	523.4	247.5	224.7	457.0	544.1	252.1	228.8
10.00	460.1	531.8	242.9	226.2	452.9	536.6	253.8	230.4	468.5	557.7	258.4	234.6
10.23	471.5	545.0	255.5	231.9	475.7	549.8	260.0	236.1	479.9	571.3	264.6	240.3
10.75	482.9	558.2	261.7	237.6	487.1	563.0	266.3	241.8	491.3	584.9	270.9	246.0
11.00	494.4	571.4	268.0	243.3	498.5	576.2	272.6	247.5	502.7	598.4	270.9	251.7
11.00	505.8	584.6	274.3	249.0	509.9	589.4	278.9	253.2	514.1	612.0	283.5	257.4
11.50	517.2	597.7	280.6	254.7	521.3	602.6	285.2	258.9	525.5	625.6	289.8	263.1
11.75	528.6	610.9	286.9	260.4	532.8	615.7	291.5	264.6	536.9	639.2	296.0	268.8
12.00	540.0	624.1	293.1	266.2	544.2	628.9	291.5	270.3	548.3	652.8	302.3	274.5
12.00	J-10.0	U24.1	233.I	200.2	J 111 .2	020.3	£31.1	2/0.3	J 1 0.3	032.0	302.3	2/4.3

0279

								rce - Mo				
Number of				Provid	led Helix	unit te	nsile stre	ess, 🛭 F _{ht}	(Mpa)			
Helix per unit area in	20 Mpa				30 Mpa			40 Mpa				
tension (Helix/m²)	Class A	Class B	Class C	Class C _s	Class A	Class B	Class C	Class C _s	Class A	Class B	Class C	Class C
2000	0.35	0.47	0.18	0.15	0.39	0.53	0.23	0.19	0.43	0.59	0.28	0.23
2500	0.45	0.61	0.24	0.20	0.49	0.66	0.29	0.24	0.53	0.72	0.34	0.28
3000	0.55	0.73	0.30	0.25	0.59	0.78	0.35	0.29	0.64	0.84	0.40	0.33
3500	0.65	0.85	0.36	0.30	0.70	0.90	0.41	0.34	0.74	0.96	0.46	0.38
4000	0.76	0.97	0.41	0.35	0.80	1.02	0.46	0.39	0.84	1.07	0.51	0.43
4500	0.86	1.08	0.47	0.40	0.90	1.14	0.52	0.44	0.94	1.19	0.57	0.48
5000	0.96	1.20	0.52	0.45	1.00	1.25	0.57	0.49	1.04	1.30	0.62	0.53
5500	1.06	1.31	0.58	0.50	1.10	1.36	0.63	0.54	1.14	1.41	0.67	0.59
6000	1.16	1.42	0.63	0.55	1.20	1.47	0.68	0.59	1.25	1.52	0.73	0.64
6500	1.26	1.53	0.69	0.60	1.31	1.58	0.73	0.65	1.35	1.63	0.78	0.69
7000	1.37	1.64	0.74	0.65	1.41	1.69	0.79	0.70	1.45	1.74	0.83	0.74
7500	1.47	1.75	0.79	0.71	1.51	1.80	0.84	0.75	1.55	1.85	0.89	0.79
8000	1.57	1.86	0.85	0.76	1.61	1.90	0.89	0.80	1.65	1.95	0.94	0.84
8500	1.67	1.96	0.90	0.81	1.71	2.01	0.95	0.85	1.75	2.06	0.99	0.89
9000	1.77	2.07	0.95	0.86	1.81	2.12	1.00	0.90	1.85	2.17	1.04	0.94
9500	1.87	2.18	1.01	0.91	1.91	2.23	1.05	0.95	1.96	2.28	1.10	0.99
10000	1.97	2.29	1.06	0.96	2.02	2.34	1.10	1.00	2.06	2.38	1.15	1.04
10500	2.08	2.40	1.11	1.01	2.12	2.45	1.16	1.05	2.16	2.50	1.20	1.09
11000	2.18	2.52	1.17	1.06	2.22	2.57	1.21	1.10	2.26	2.61	1.26	1.14
11500	2.28	2.63	1.22	1.11	2.32	2.68	1.27	1.15	2.36	2.73	1.32	1.19
12000	2.38	2.75	1.28	1.16	2.42	2.80	1.33	1.20	2.46	2.85	1.37	1.25
12500	2.48	2.73	1.34	1.21	2.52	2.92	1.38	1.25	2.56	2.83	1.43	1.30
13000	2.58	2.99	1.39	1.26	2.62	3.03	1.44	1.31	2.67	3.08	1.48	1.35
13500	2.68	3.10	1.45	1.31	2.73	3.15	1.49	1.36	2.77	3.20	1.54	1.40
14000	2.79	3.22	1.50	1.37	2.83	3.27	1.55	1.41	2.87	3.32	1.60	1.45
14500	2.89	3.34	1.56	1.42	2.93	3.39	1.61	1.46	2.97	3.43	1.65	1.50
15000	2.99	3.46	1.62	1.47	3.03	3.50	1.66	1.51	3.07	3.55	1.71	1.55
15500	3.09	3.57	1.67	1.52	3.13	3.62	1.72	1.56	3.17	3.67	1.76	1.60
16000	3.19	3.69	1.73	1.57	3.23	3.74	1.77	1.61	3.28	3.79	1.82	1.65
16500	3.19	3.81	1.78	1.62	3.34	3.86	1.83	1.66	3.38	3.90	1.88	1.70
										4.02		t
17000	3.40	3.93	1.84	1.67	3.44	3.97	1.89	1.71	3.48		1.93	1.75
17500 18000	3.50 3.60	4.04 4.16	1.90 1.95	1.72 1.77	3.54 3.64	4.09 4.21	1.94 2.00	1.76 1.81	3.58	4.14 4.26	1.99 2.04	1.80
				1				i	3.68	-		†
18500	3.70	4.28	2.01	1.82	3.74	4.33	2.05	1.86	3.78	4.37	2.10	1.91
19000	3.80	4.39	2.06	1.87	3.84	4.44	2.11	1.91	3.88	4.49	2.15	1.96
19500	3.90	4.51	2.12	1.92	3.94	4.56	2.16	1.97	3.99	4.61	2.21	2.01
20000	4.00	4.63	2.17	1.97	4.05	4.68	2.22	2.02	4.09	4.73	2.27	2.06
20500	4.11	4.75	2.23	2.02	4.15	4.79	2.28	2.07	4.19	4.84	2.32	2.11
21000	4.21	4.86	2.29	2.08	4.25	4.91	2.33	2.12	4.29	4.96	2.38	2.16
21500	4.31	4.98	2.34	2.13	4.35	5.03	2.39	2.17	4.39	5.08	2.43	2.21
22000	4.41	5.10	2.40	2.18	4.45	5.15	2.44	2.22	4.49	5.20	2.49	2.26
22500	4.51	5.22	2.45	2.23	4.55	5.26	2.50	2.27	4.59	5.31	2.55	2.31
23000	4.61	5.33	2.51	2.28	4.65	5.38	2.56	2.32	4.70	5.43	2.60	2.36
23500	4.71	5.45	2.57	2.33	4.76	5.50	2.61	2.37	4.80	5.55	2.66	2.41
24000	4.82	5.57	2.62	2.38	4.86	5.62	2.67	2.42	4.90	5.66	2.71	2.46
24500	4.92	5.69	2.68	2.43	4.96	5.73	2.72	2.47	5.00	5.78	2.77	2.51
25000	5.02	5.80	2.73	2.48	5.06	5.85	2.78	2.52	5.10	5.90	2.83	2.56

Originally Issued: 05/2013 Revised: 08/29/2014 Valid Through: 05/2015

Example 1: Class A Slab on Grade Design – Original Rebar Design Given

	lass A Slab on Grade Design – Origir	lai Kebar Design Give	en
Imperial Units	Metric Units		
Given: 8" slab on ground with #4 bars @ 14" OCEW mid depth fy = 60000 psi f c = 4000 psi	Given: 254 mm slab on ground with 12mm bars @ 300 mm OCEW mid depth fy = 500 Mpa		
b =12 in φ = 1.0	f _c = 30 Mpa b =1000 mm φ = 1.0	SPER	300000
Calculation in accordance with ACI	318 and this report	Code Reference	Report Reference
Step 1. Class Selection 1 - Slab on ground (Soil supported) 2 - Shrinkage & temperature reinforcement less than ρ = 0.0020 ⇒ Class A	Step 1. Class Selection 1 - Slab on ground (Soil supported), 2 - Shrinkage & temperature reinforcement less than p=0.0020		4.1
Step 2. Compute area of steel required at the center of the section, As = $0.2 \times 12/14$ in = 0.17 in ² /ft $\rho = 0.0018$	Step 2. Compute area of steel required at the center of the section As = 116 x 1000 / 300mm = 377 mm ² /m p = 0.0015	ACI 318 7.12	4.6.1
(Given, but if it were not given it would be computed based on the loads using standard ACI 318 methods)	(Given, but if it were not given it would be computed based on the loads using standard ACI 318 methods)		
Step 3. Use Table 1, find the nearest area of steel in column 1 and read the required number of Helix for the appropriate compressive strength: = 224 pieces of Helix Micro Rebar	Step 3. Use Table 1, find the nearest area of steel in column 1 and read the required number of Helix for the appropriate compressive strength: = 985.4 pieces of Helix Micro Rebar		4.6.2 Table 1
Step 4. Divide number of Helix required by the area in tension, A _g = 224/(8x14 in) = 2.0 Helix per square inch	Step 4. Divide number of Helix required by the area in tension, A _g : = 985.4 x 1000 ² /(254*1000 mm) = 3880 Helix per square meter		4.6.2
Step 5. Use Table 2, find the nearest number of Helix per unit area in column 1 and read the required Helix dosage for the appropriate class and compressive strength:	Step 5. Use Table 2, find the nearest number of Helix per unit area in column 1 and read the required Helix dosage for the appropriate class and compressive strength:		4.6.3 Table 2
Required Helix Dosage 9.3 lb/yd ³	Required Helix Dosage 7.1 kg/m ³		

0279

Originally Issued: 05/2013 Revised: 08/29/2014 Valid Through: 05/2015

Example 2: Class A Slab on Metal Deck - Original Mesh Given

·	le 2: Class A Slab on Metal Deck - Origina		
Imperial Units	Metric Units		
Given: Slab on composite metal deck 5" total thickness, 2"metal deck with 6"x 6"- W2.9 x W2.9 welded wire mesh $f_y = 60000 \text{ psi}$ $f_c = 4000 \text{ psi}$ $b = 12 \text{ in}$ $\phi = 1.0$	Given: Slab on composite metal deck 125 mm total thickness, 50 mm metal deck with welded wire mesh 6mm dia x 200mm spacing $f_y = 500$ Mpa $f_c = 30$ Mpa $f_c = 1000$ mm $f_c = 1.0$	S	S
Calculation in accordance with ACI 318	3 and this report	Code Reference	Report Reference
Step 1. Class Selection 1 - Slab on composite metal deck 2 - Shrinkage and temperature reinforcement less than ρ=0.0020 ⇒ Class A	Step 1. Class Selection 1 - Slab on composite metal deck 2 - Shrinkage and temperature reinforcement less than ρ=0.0020 ⇒ Class A		4.1
Step 2. Compute area of steel required at the center of the section As =0.058in ² /ft p=0.0016	Step 2. Compute area of steel required at the center of the section As =141 mm²/m p=0.0019	ACI 318 Sec.7.12	4.6.1
Step 3. Use Table 1, find the nearest area of steel in column 1 and read the required number of Helix for the appropriate compressive strength: = 79.4 pieces of Helix Micro Rebar	Step 3. Use Table 1, find the nearest area of steel in column 1 and read the required number of Helix for the appropriate compressive strength: = 347.5 pieces of Helix Micro Rebar		4.6.2 Table 1
Step 4. Divide required number of Helix by the gross section area in tension, A _g : = 79.4/(3x12 in) = 2.2 Helix per square inch. Note: the 5" thickness is reduced to 3 inches due to the 2" deep corrugated metal deck.	Step 4. Divide number of Helix required by the gross section area in tension, A _g : = 347.5 x 1000 ² /(75 x 1000mm) = 4633 Helix per square meter. Note: the 75mm thickness is reduced to 50 mm due to the 50 mm deep corrugated metal deck.		4.6.2
Step 5. Use Table 2, find the nearest number of Helix per unit area in column 1 and read the required Helix dosage for the appropriate compressive strength: Required Helix Dosage 9.3 lb/yd ³	Step 5. Use Table 2, find the nearest number of Helix per unit area in column 1 and read the required Helix dosage for the appropriate compressive strength: Required Helix Dosage 8.9 kg/m ^{3.}		4.6.3 Table 2

0279

Originally Issued: 05/2013 Revised: 08/29/2014 Valid Through: 05/2015

Example 3: Class B Wall Design - Minimum Reinforcement Ratio Given

	Class B Wall Design –Minimum Reinfo	rcement Ratio Given	
English/Imperial Units	Metric Units		
Given:	Given:		
Wall 12' high x 6" thick with	Wall 3.6m high x 150 mm thick with		
(ρ _{min} =0.0025) #4 bars @ 12" OCEW -	(ρ _{min} =0.0025) 12mm bar @300 mm		
at mid-depth	OCEW at mid-depth	5	
f _y = 60000 psi	fy = 500 Mpa		
f _c = 4000 psi	f _c = 30 Mpa		*S
b =12 in	b =1000 mm		
$\Phi = 0.9$	$\Phi = 0.8$		
ϕ Mn = 31 kip-in/ft = 31,000 lb-in/ft	$\dot{\phi}$ Mn = 10.8 kN-m/m		
		Ø +_	
		S	
)	
Calculation in accordance with ACI 31	8 and this report	Code Reference	Report Reference
Saloulation in accordance with Across		Godo Roioioiloo	Roport Rolorolloo
Step 1. Class Selection	Step 1. Class Selection	ACI 318 Section	4.1
Vertical structural support	Vertical structural support	21.7.2-5	
Slenderness check, h/24	 Slenderness check, h/24 	_	
=12' x 12"/24 = 6" OK	= 3.6m x 1000mm/24 = 150 OK		
12 x 12 /21 0 010	0.011 X 1000/11111/24 - 100 OK		
⇒ Class B	⇒ Class B		
Step 2. Compute required area of steel	Step 2. Compute required area of steel	ACI 318 Sec 10	4.6.1 Figure 2
at the center of the tension zone using	at the center of the tension zone using	(Rebar given, but if it	J
equations in Figure 2:	equations in Figure 2:	were not given it	
Calculate the neutral axis depth, "c".		would be computed	
c = 0.296"	Calculate the neutral axis depth, "c".	based on the loads	
	c = 6.71 mm	using standard ACI	
Required area of steel = 0.17 in ² /ft at		318 methods)	
tension zone center	Required area of steel= 286 mm ² /m	,	
Step 3. Use Table 1, find the nearest	Step 3. Use Table 1, find the nearest		4.6.2
area of steel in column 1 and read the	area of steel in column 1 and read the		Table 1
required number of Helix for the	required number of Helix for the		
appropriate compressive strength:	appropriate compressive strength:		
= 225 pieces of Helix Micro Rebar	= 715 pieces of Helix Micro Rebar.		
Step 4. Divide number of Helix	Step 4. Divide number of Helix		4.6.2
required by the area in tension, A _T	required by the area in tension, A _T		4.6.1 Figure 2
			•
$A_T = b x (h-c) = 12 x 5.7 = 68.4 in^2$	$A_T = b x (h-c) = 1000 mm x (150 mm - 1000 mm) x (150 mm) = 1000 mm x $		
	6.71mm) x $1m^2/1000mm^2 = 0.143 m^2$		
$= 225/(68.4 \text{ in}^2)$	= 715/0.143		
	= 4990 Helix per square meter		
= 3.28 Helix per square inch			
			Table 2
•			Table 3
$= 181 \times 10^6 / (57000 \sqrt{4000})$	Strain = $1.25 \times 10^6 / (4200 \sqrt{30})$		
,			
Step 7. Use result of step 4 to find			5.7
allowable strain = 105 > 50 OK	allowable strain = 105 > 59 OK		
Step 5. Use Table 2, find the nearest number of Helix per unit area in column 1 and read the required Helix dosage for the appropriate class and compressive strength: Required Helix Dosage 18.7 lb/yd ³ Step 6. Use Table 3 & result of step 4 to find Helix tensile stress, = 181 psi = $181 \times 10^6/(57000\sqrt{4000})$) = 50 micro strain Step 7. Use result of step 4 to find	Step 5. Use Table 2, find the nearest number of Helix per unit area in column 1 and read the required Helix dosage for the appropriate class and compressive strength: Required Helix Dosage 11.0 kg/m³ Step 6. Use Table 3 & result of step 4 to find Helix tensile stress: =1.25 MPa Strain = $1.25 \times 10^6 / (4200 \sqrt{30})$ = 59 micro strain Step 7. Use result of step 4 to find		4.6.3 Table 2 4.6.4 Table 3

0279

Originally Issued: 05/2013 Valid Through: 05/2015 Revised: 08/29/2014

	B Grade Beam Shear Design Only – Ori	ginal Shear Rebar Gi	ven	
English/Imperial Units Given: Grade beam 8" thick with #4 bars @12" shear ties. fy = 60000 psi f c= 4000 psi b =12 in \$\phi\$ = 0.75 Assume moment governs design	Metric Units Given: Grade Beam 200 mm thick with 12mm bars @ 300 mm shear ties. fy = 500 Mpa f_c = 40 Mpa b = 1000 mm ϕ = 0.75 Assume moment governs design	S		
Calculation in accordance with ACI 31	8 and this report	Code Reference	Report Reference	
Step 1. Class Selection	Step 1. Class Selection		4.1	
⇒ Class B	⇒ Class B			
Step 2. Compute Required Area of Steel for shear resistance, #4@12"(Given).	Step 2. Compute Required Area of Steel for shear resistance, N 12 @300 (Given).			
Step 3. Compute required area of steel assuming rebar inclined at 45 degrees, As = ϕ A _s x sin(45) x b/s = 0.75 x 0.2 x .707 x 12"/12" = 0.106 in ² /ft	Step 3. Compute required area of steel assuming rebar inclined at 45 degrees, As = ϕ A _s x sin(45) x b/s = 0.75 x 113 x 0.707 x1000/300 mm = 200 mm ² /m	ACI 318 Section 11.5.7.5	4.6.1	
Step 4. Use Table 1, find the nearest area of steel in column 1 and read the required number of Helix for the appropriate compressive strength: = 145.1 pieces of Helix Micro Rebar	Step 4. Use Table 1, find the nearest area of steel in column 1 and read the required number of Helix for the appropriate compressive strength: = 492 pieces of Helix Micro Rebar		4.6.2 Table 1	
Step 5. Compute shear area based on diagonal tension plane = h x 1.41 x b = 8 x 1.41 x 12 = 135 in ² /ft	Step 5. Compute shear area based on diagonal tension plane = h x 1.41 x b = 200 x 1.41 x 1000 mm/1000 ² = 0.282 m ² /m			
Step 6. Divide number of Helix required by the shear area, =145.1/135 =1.07 Helix per square inch	Step 6. Divide Number of Helix Required Area, = 492/0.282 = 1745 Helix per square meter		4.6.8	
Step 7. Use Table 2, find the nearest number of Helix per unit area in column 1 and read the required Helix dosage for the appropriate class and compressive strength: Required Helix dosage 7.3 lb/yd ³	Step 7. Use Table 2, find the nearest number of Helix per unit area in column 1 and read the required Helix dosage for the appropriate class and compressive strength: Required Helix dosage 4.9kg/m³		4.6.3 Table 2	
Less than minimum, use 9 lb/yd ³	Less than minimum, use 5 kg/m ³			

0279

	Example 5: Class B Wall Design – Hybri	d			
English/Imperial Units Given: Wall 20' high x 10" thick with 2- Layers #6 bars @ 12" OCEW As = 0.44 in²/ft (ρ =0.0073) ϕ M = 200 k-in/ft C_c = 1.5 in f_y = 60000 psi f_c = 4000 psi b =12 in ϕ = 0.9	Metric Units Given: Wall 6m high x 254 mm thick with 2 -Layers 16mm bars @200 mm OCEW As = 1000 mm²/m (ρ =0.0079) ϕ M = 83 kN-m/m C_c = 40 mm fy = 500 Mpa f_c = 30 Mpa f_c = 30 Mpa f_c = 0.8	S			
Calculation in accordance with ACI 318	and this report	Code Reference	Report Reference		
Step 1. Class Selection Vertical structural support Slenderness check, h/24 =20 x12/24 =10" OK Strain check Rebar Tension= As Fy =26400 lb Helix tensile stress= = T [(h-C _c)/(h/2)]/(bh)= = 26400[1.7]/(10x12)= = 418 psi = 418x10 ⁶ /(57000√4000) = 116 micro strain Allowable strain Number of Helix/in²= 8.0 110 micro strain <116 Not OK Class B Hybrid	Step 1. Class Selection Vertical structural support • Slenderness check, h/24 = 6 x 1000/24 = 250mm OK • Strain check Rebar Tension= As Fy = 500000 N Helix tensile stress= = T [(h-C _c)/(h/2)]/(bh)= = 500000[1.7]/(245x1000)= = 3.45 Mpa = 3.45 x10 ⁶ /(4200√30) = 150 micro strain • Allowable strain Number of Helix/in²= 8.0 110 micro strain < 150 Not OK	Kelefelide	4.1 4.6.5 5.7		
Step 2.Calculate minimum As As = $3\sqrt{f'c}$ bd/fy = $3\sqrt{4000}$ x 12 x 8.2 / 60000 = 0.31 in ² /ft Use #5 at 12 in = 0.31 in ² /ft	Step 2.Calculate minimum As $As=0.25\sqrt{f'c}$ bd/fy = $0.25\sqrt{30}$ x 1000 x 206 / 500 = 564 mm ² /m use 12mm at 200mm = 550 mm ² /m	ACI 318 Section 10.5	4.7.2		
Step 3. Calculate the moment for the Hybrid rebar \$\phi M = \phi As x fy x(h/2) = 84 k-in/ft\$	Step 3. Calculate the moment for the Hybrid rebar \$\phi M= \phi As x fy x(h/2)= 28 KN-m/m\$				
Step 4. Calculate Helix required bending moment \$\phi M=200-84=116 \text{ k-in/ft}\$	Step 4. Calculate Helix required bending moment \$\phi M=83-28 = 55 KN-m/m\$				

0279

Originally Issued: 05/2013 Revised: 08/29/2014 Valid Through: 05/2015

Example 5: Class B Wall Design – Hybrid (Cont'd)

English/Imperial Units	Metric Units	
Given: Wall 20' high x 10" thick with 2- Layers #6 bars @ 12" OCEW As = $0.44 \text{ in}^2/\text{ft}$ (p=0.0073) ϕ M = 200 k-in/ft C_c = 1.5 in f_y = 60000 psi f_c = 4000 psi b = 12 in ϕ = 0.9	Given: Wall 6m high x 254 mm thick with 2 -Layers 16mm bars @200 mm OCEW As = 1000 mm 2 /m (ρ =0.0079) ϕ M = 83 kN-m/m C_c = 40 mm fy = 500 Mpa f_c = 30 Mpa b =1000 mm ϕ = 0.8	S

Calculation in accordance with ACI 318 and the	nis report	Code Reference	Report Reference		
Step 5. Calculate the equivalent area of steel for the bending moment that Helix requires Using equation in Figure 2, calculate the neutral axis depth, "c" c = 0.662" As at tension zone center = 0.3835 in ² /ft	Step 5. Calculate the equivalent area of steel for the bending moment that Helix requires Using equation in Figure 2, calculate the neutral axis depth, "c" c = 20.1 mm	ACI 318 Section 10	4.6.1 Figure 2		
Step 6. Use Table 1, find the nearest area of steel in column 1 and read the required number of Helix for the appropriate compressive strength: = 526 pieces of Helix Micro Rebar	As at tension zone center = 857 mm²/m Step 6. Use Table 1, find the nearest area of steel in column 1 and read the required number of Helix for the appropriate compressive strength: = 2093 pieces of Helix Micro Rebar.		4.6.2 Table 1		
Step 7. Divide number of Helix required by the area in tension, , A_T $A_T = b \times (h-c) = 12 \times 9.3 = 112 \text{ in}^2$ $= 526/112 \text{ in}^2$ $= 4.70 \text{ Helix per square inch}$	Step 7. Divide number of Helix required by the area in tension, A_T $A_T = b \times (h-c) = 1000 \text{mm} \times (254 \text{mm} - 20.1 \text{mm}) \times 1 \text{m}^2 / 1000 \text{mm}^2 = 0.234 \text{ m}^2$ $= 2093 / 0.234$ $= 8948 \text{ Helix per square meter}$		4.6.2		
Step 8. Use Table 2, find the nearest number of Helix per unit area in column 1 and read the required Helix dosage for the appropriate class and compressive strength: Required Helix Dosage 26.0 lb/yd³ plus one layer of #5 bars at 12 in on center at mid depth	Step 8. Use Table 2, find the nearest number of Helix per unit area in column 1 and read the required Helix dosage for the appropriate class and compressive strength: Required Helix Dosage 18.7 kg/m³ plus one layer of 12 mm bars at 200 mm on center at mid depth		4.6.3 Table 2		
Step 9. Strain check Use Table 3 & result of step 7 to find Helix tensile stress,	Step 9. Strain check Use Table 3 & result of step 7 to find Helix tensile stress: $\phi F_{ht} = 2.12 MPa$ Strain = 2.12x10 ⁶ /(4200 $\sqrt{30}$) = 92 micro strain		4.6.4 Table 3 4.6.5		

Originally Issued: 05/2013 Revised: 08/29/2014 Valid Through: 05/2015

Example 5: Class B Wall Design - Hybrid (Cont'd)

English/Imperial Units Given: Wall 20' high x 10" thick with 2- Layers #6 bars @ 12" OCEW As = 0.44 in ² /ft (ρ =0.0073) ϕ M = 200 k-in/ft C_c = 1.5 in f_y = 60000 psi f_c = 4000 psi f_c = 4000 psi f_c = 0.9	Metric Units Given: Wall 6m high x 254 mm thick with 2 -Layers 16mm bars @200 mm OCEW As = 1000 mm²/m (ρ = 0.0079) φM = 83 kN-m/m C _c = 40 mm fy = 500 Mpa f _c = 30 Mpa b = 1000 mm φ = 0.8	John d)	
Calculation in accordance with ACI 3	18 and this report	Code Reference	Report Reference
Step 10. Use result of step 7 to find allowable strain = 110 > 70 OK	Step 10. Use result of step 7 to find allowable strain = 105 > 92 OK		5.7

Originally Issued: 05/2013 Revised: 08/29/2014 Valid Through: 05/2015

Appendix A: Field Verification of Helix Dosage by Washout Test

Procedure

Helix content (dosage) verification testing, when required, shall be conducted in accordance with CSA A23.2-16C "Standard Test Method for Determination of Steel or Synthetic Fibre Content in Plastic Concrete". Available for download at http://shop.csa.ca/

Criteria

The average Helix content (CSA A23.2-16C section 9g) shall exceed specified minimum dosages in Tables 1 or 2 below. If dosage verification is required in accordance with Section 0 and two consecutive tests fail, corrective action is required prior to continuing the pour.

Conversions Multiply lb/yd³ by 0.59 to obtain oz/ ft³ Grams per liter is equal to kg/m³

Boxes Of Helix Added to	Specified Helix Dosage	Minimum Average Helix Dosage
9 yd³ Truck	(lb/yd³)	(lb/yd³)
1	5	3.6
2	10	7.9
3	15	12.5
4	20	17.4
5	25	22.4
6	30	27.6
7	35	32.8
8	40	38.0
9	45	43.3
10	50	48.5
11	55	53.7
12	60	58.9
13	65	64.0

Boxes Of Helix Added	Specified Helix	Minimum Average Helix
to	Dosage	Dosage
10 yd³ Truck	(lb/yd³)	(lb/yd³)
1	4.5	3.3
2	9	7.0
3	13.5	11.1
4	18	15.4
5	22.5	19.9
6	27	24.5
7	31.5	29.1
8	36	33.8
9	40.5	38.5
10	45	43.3
11	49.5	48.0
12	54	52.6
13	58.5	57.3

Table 1 Imperial Unit Limits (9 and 10 yd3 Trucks)

Boxes Of	Specified	Minimum			
Helix	Helix	Average Helix			
Added to	Dosage	Dosage			
7 m³ Truck	(kg/m³)	(kg/m³)			
1	2.9	2.1			
2	5.8	4.5			
3	8.8	7.2			
4	11.7	10.0			
5	14.6	12.9			
6	17.5	15.9			
7	20.5	18.9			
8	23.4	22.0			
9	26.3	25.0			
10	29.2	28.1			
11	32.1	31.1			
12	35.1	34.2			
13	38.0	37.2			
14	40.9	40.2			

and to yo	Trucks)	
Boxes Of	Specified	Minimum
Helix	Helix	Average Helix
Added to	Dosage	Dosage
8 m³ Truck	(kg/m³)	(kg/m³)
1	2.6	1.8
2	5.1	4.0
3	7.7	6.3
4	10.2	8.8
5	12.8	11.3
6	15.3	13.9
7	17.9	16.6
8	20.5	19.2
9	23.0	21.9
10	25.6	24.6
11	28.1	27.2
12	30.7	29.9
13	33.2	32.6
14	35.8	35.2

Table 2 Metric Unit Limits (7 and 8 m³ Trucks)

Number:

0279

Originally Issued: 05/2013 Revised: 08/29/2014 Valid Through: 05/2015

Appendix B: Helix 5-25 Micro Rebar Quick Reference Class A and B Dosages

The tables include common welded wire mesh and rebar configurations in concrete 4 - 10 inch (100 - 250 mm) thicknesses along with Helix alternative designs computed in accordance with this report. Class A (Section 4.2) is assumed when reinforcement ratio is less than 0.002, (just above the limit for temperature and shrinkage reinforcement in ACI 318 Section 7.12), otherwise class B (Section 4.3) is assumed (shaded cells). This table shall not be used for class C or Cs design (Section 4.4 and 4.5). The rebar and mesh in these tables is assumed to specified at mid depth and concrete has a 3000 psi (20 Mpa) compressive strength. To use the table find the reinforcement specified in the left hand column and follow to the right until you reach the column corresponding to the specified thickness of the concrete. The number in the cell is the Helix dosage required to replace the mesh or rebar. The tables may be used for design provided a written submittal referencing this report is provided to the code official indicating that the original specifications match the table assumptions, the design class is either A or B and restrictions in section 5 are satisfied.

Comr	non Mesh Arra	ngement	s Imperia	l Units				Common	Mesh Arr	angement	ts Metric	Units	
3000) psi Concrete	4 inch	5 inch	6 inch	7 inch	8 inch	10 inch	20 MPa	Concrete	100 mm	150 mm	200 mm	250 mm
Grade 60 WWF		Minir	Minimum Helix 5-25 Micro Rebar Do		osage (lb/yd³)		Grade 500 WWF		Helix Micro Rebar Dose (kg/m³)				
6x6	W1.4XW1.4	4.5	4.5	4.5	4.5	4.5	4.5	200mm	4.75mm	4.0	3.0	3.0	3.0
6X6	W2.0XW2.0	5.2	4.5	4.5	4.5	4.5	4.5	200mm	6mm	6.4	4.3	3.2	3.0
6X6	W2.9XW2.9	7.5	6.0	5.0	4.5	4.5	4.5	200mm	6.75mm	8.0	5.4	4.0	3.2
6X6	W4XW4	10.3	8.2	6.9	5.9	5.2	4.5	200mm	7.6mm	11.5	6.8	5.1	4.1
4X4	W2.9XW2.9	11.2	9.0	7.5	6.4	5.6	4.5	200mm	8.6mm	14.2	8.6	6.5	5.2
6X6	W5.5XW5.5	15.7	11.3	9.4	8.1	7.1	5.7	200mm	9.5mm		11.9	7.9	6.3
4X3	W4XW4	16.9	13.9	10.3	8.8	7.7	6.2	100mm	7.6mm		14.7	11.5	8.1
4X4	W5.5XW5.5	22.3	18.3	15.7	12.0	10.6	8.5						
Singl	e Layer Rebar	Imperial L	Jnits					Single Layer Rebar Metric Units					
3000) psi Concrete	4 inch	5 inch	6 inch	7 inch	8 inch	10 inch	20 MPa Concrete 100 mm 150 mm 200 mm 250 m				250 mm	
Gra	de 60 Rebar	Minimum Helix 5-25 Micr			ro Rebar Dosage (lb/yd³)			Grade 5	00 Rebar	Helix	Micro Reb	ar Dose (kg/m³)
#3	24" OC	7.1	5.7	4.8	4.5	4.5	4.5	10mm	400 mm	8.6	5.8	4.4	3.5
#3	18" OC	9.4	7.6	6.3	5.4	4.8	4.5	10mm	300 mm	12.8	7.7	5.8	4.6
#3	16" OC	10.6	8.5	7.1	6.1	5.3	4.5	10mm	200 mm	18.2	12.8	8.6	6.9
#3	12" OC	15.7	11.3	9.4	8.1	7.1	5.7	12mm	400 mm	13.5	8.1	6.1	4.9
#4	24" OC	14.4	10.3	8.6	7.4	6.4	5.2	12mm	300 mm		12.2	8.1	6.5
#4	18" OC	18.5	15.2	11.4	9.8	8.6	6.9	12mm	200 mm			13.5	11.1
#4	16" OC	20.5	16.9	14.4	11.0	9.6	7.7	16mm	400 mm			12.4	10.2
#4	12" OC	35.0	21.7	18.5	16.7	14.3	10.2	16mm	300 mm				13.2
#5	12" OC		47.2	27.2	23.7	21.1	17.3		·	·			

NOTE: If the original design configuration is not listed, the dosage cell is blank or if there is ANY deviation from the assumptions (original bar depth, grade listed in table, thickness, or concrete compressive strength) listed above, doubt about the design class (Section 4.2-4.3), or doubt about compliance with the conditions of use (Section 5), please contact the manufacturer (Polytorx) or a professional registered design professional and ask for a detailed design in accordance with this report based on your exact specification.

Conversion for Canadian rebar: use the Imperial table, multiply dosages by 0.6 for kg/m³; rebar equivalents: 10M = #3, 12M = #4, 15M = #5